Пређи на садржај

Biljna kutikula

С Википедије, слободне енциклопедије
(преусмерено са Plant cuticle)
Vodene kuglice na voštanoj kutikuli lišća kale

Biljna kutikula je zaštitni film koji prekriva epidermu listova, mlade izdanke i ostale vazdušne biljne organe bez periderma. Sastoji se od lipida i ugljovodoničnih polimera impregniranih voskom, a sintetišu je isključivo epidermne ćelije.[1]

Anatomija lista eudikotiledona

Biljna kutikula je sloj lipidnih polimera, impregniranih voskom, koji je prisutan na spoljnim površinama primarnih organa svih vaskularnih kopnenih biljaka. Prisutan je i u generaciji sporofita paprati i u sporofitu i gametofitu mahovina.[2] Biljna kutikula formira koherentan spoljni pokrivač biljke koji može biti izolovan i netaknut tretiranjem biljnog tkiva enzimima poput pektinaza i celulaza.

Kutikula je sastavljena od nerastvorne kutikulske membrane impregnirane i prekrivene rastvorljivim voskom. Kutin, poliester polimer sastavljen od inter-esterificirane omega hidroksi kiseline, koji su umreženi vezama estera i epoksida, najpoznatija je strukturna komponenta kutikulske membrane.[3][4] Kutikula može sadržavati i ugljovodonični polimer poznat kao kutan.[5] Kutikulska membrana impregnirana je kutikulskim voskom.[6] Prekriveni su epikutikulskim voskom, koji je mešavina hidrofobnog alifatskih jedinjenja, ugljovodonika sa dužinama lanaca u tipskom rasponu od C16 do C36.[7]

Biosinteza kutikulskog voska

[уреди | уреди извор]

Sadašnje naučno razumevanje kutikulskog voska je ograničeno, ali su identifikovane znatne hemikalije i putevi. Za ovaj vosak se zna da se uglavnom sastoji od jedinjenja koja potiču od veoma dugolančanih masnih kiselina (VLCFA), kao što su aldehidi, alkoholi, alkani, ketoni i estri.[8][9] Takođe treba napomenuti da su u kutikulskom vosku prisutni i druga jedinjenja koja nisu VLCFA derivati, kao što su terpenoidi i flavonoidi,[9] te stoga imaju različite puteve sinteze od onih o kojima se ovde govori.

Prvi korak puta biosinteze kutikulskog voska je stvaranje VLCFA-a, koji se odvija u endoplazmatskom retikulumu epidermnih ćelija.[9] VLCFA sinteza počinje sa de novo biosintezom C16 ili C18 acil lanaca, i okončava se sa produžavanjem tih lanaca.[9] Važan katalizator, za koji se misli da je u ovom procesu, je kompleks elongaza masnih kiselina (FAE).[8][9][10]

Da bi se formirale komponente kutikulskog voska, VLCFA se modifikuju kroz dva do sada identifikovana puta: put smanjenja acila ili put dekarbonilacije.[9] Na putu redukcije acila, reduktaza pretvara VLCFA-ove u primarne alkohole, koji se mogu pretvoriti u estere voska kroz sintazu voska.[9][10] Na putu dekarbonilacije stvaraju se aldehidi i dekarboniliraju se u alkane, a oni se nakon toga mogu oksidovati da bi nastali sekundarni alkoholi i ketoni. Put biosinteze voska završava se transportom komponenti voska iz endoplazmatskog retikuluma na površinu epiderme.[9]

Primarna funkcija biljne kutikule je da bude prepreka propustljivosti vode i da sprečava isparavanje vode s površine epiderme, a takođe sprečava spoljnu vodu i rastvore da uđu u tkiva. Ona funkcioniše i kao barijera propusnosti za vodu i druge molekule (sprečava gubitak vode), a mikro i nanostruktura kutikule daje specijalizovana površinska svojstva koja sprečavaju kontaminaciju biljnih tkiva spoljnom vodom, prljavštinom i mikroorganizmima. Vazdušni organi mnogih biljaka, poput listova svetog lotosa (Nelumbo nucifera), imaju ultrahidrofobna i samočišćujuća svojstva koja su opisali Bartlot i Najnhuis (1997).[11] Efekt lotusa ima primenu u biomimetici tehničkim materijalima.

Zaštita od dehidracije koju pruža kutikula majke poboljšava stanje potomstva kod mahovine Funaria hygrometrica i u sporofitima svih vaskularnih biljaka. Kod semenjača kutikula ima tendenciju da bude deblja na vrhu lista, ali ne uvek. Listovi biljaka kserofita prilagođeni vlažnijoj klimi imaju jednaku debljinu kutikule u odnosu na one mezofitne biljke iz vlažnijeg podnevlja koji nemaju visoki rizik od dehidracije donjih strana lišća.[12]

Biljna kutikula jedna je u nizu inovacija, zajedno sa stomama, ksilemom i floemom i međućelijskim prostorima kod biljaka stablašica, a kasnije lisnog mezofila, koje su biljke evoluirale pre više od 450 miliona godina tokom prelaska između života u vodi i života na kopnu.[13] Zajedno, ova svojstva omogućila su stvaranje uspravnih izdanaka, koristeći vazdušno okruženje za očuvanje vode interniranjem površina za izmenu gasova, zatvarajući ih u vodonepropusnu membranu i osiguravajući mehanizam za kontrolu promenjivog otvora zaštitne ćelije stoma, koje regulišu stope transpiracije i razmene CO2.

  1. ^ Kolattukudy, PE (1996) Biosynthetic pathways of cutin and waxes, and their sensitivity to environmental stresses. In: Plant Cuticles. Ed. by G. Kerstiens, BIOS Scientific publishers Ltd., Oxford, pp 83-108
  2. ^ Budke, J. M.; Goffinet, B.; Jones, C. S. (2013). „Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica”. Annals of Botany. 111 (5): 781—789. PMC 3631323Слободан приступ. PMID 23471009. doi:10.1093/aob/mct033. 
  3. ^ Holloway, PJ (1982) The chemical constitution of plant cutins. In: Cutler, DF, Alvin, KL and Price, CE The Plant Cuticle. Academic Press, pp. 45-85
  4. ^ Stark, RE and Tian, S (2006) The cutin biopolymer matrix. In: Riederer, M & Müller, C (2006) Biology of the Plant Cuticle. Blackwell Publishing
  5. ^ Tegelaar, EW, et al. (1989) Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L., Journal of Analytical and Applied Pyrolysis, 15, 29-54
  6. ^ Jetter, R, Kunst, L & Samuels, AL (2006) Composition of plant cuticular waxes. In: Riederer, M & Müller, C (2006) Biology of the Plant Cuticle. Blackwell Publishing, 145-181
  7. ^ Baker, EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler, DF, Alvin, KL and Price, CE The Plant Cuticle. Academic Press, 139-165
  8. ^ а б Yeats, Trevor H.; Rose, Jocelyn K.C. (septembar 2013). „The Formation and Function of Plant Cuticles”. Plant Physiology. 163 (1): 5—20. ISSN 0032-0889. PMC 3762664Слободан приступ. PMID 23893170. doi:10.1104/pp.113.222737. 
  9. ^ а б в г д ђ е ж Kunst, L; Samuels, A. L (1. 1. 2003). „Biosynthesis and secretion of plant cuticular wax”. Progress in Lipid Research. 42 (1): 51—80. ISSN 0163-7827. PMID 12467640. doi:10.1016/S0163-7827(02)00045-0. 
  10. ^ а б Suh, Mi Chung; Kim, Hae Jin; Kim, Hyojin; Go, Young Sam (1. 4. 2014). „Arabidopsis Cuticular Wax Biosynthesis Is Negatively Regulated by the DEWAX Gene Encoding an AP2/ERF-Type Transcription Factor”. The Plant Cell (на језику: енглески). 26 (4): 1666—1680. ISSN 1040-4651. PMC 4036578Слободан приступ. PMID 24692420. doi:10.1105/tpc.114.123307. 
  11. ^ Barthlott, W & Neinhuis, C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1-8
  12. ^ Freeman, S (2002) Biological Science. Prentice-Hall, Inc., New Jersey
  13. ^ Raven, J.A. (1977) The evolution of vascular land plants in relation to supracellular transport processes. Advances in Botanical Research, 5, 153-219

Spoljašnje veze

[уреди | уреди извор]