Eliptički integrali pojavili su se u vezi s rešavanjem dužine luka elipse, a prvo su ih otkrili Leonard Ojler i Đulio Fanjano.
U savremenom pristupu definišu se kao funkcija f, koja može da se predstavi u obliku:

gde je R racionalna funkcija dva argumenta, P je polinom trećeg ili četvrtoga stepena bez ponavljanja korenja, a c je konstanta.
Kasnije su otkrivene eliptičke funkcije kao inverzne funkcije eliptičkih integrala.
Eliptički integrali imaju dva argumenta, koji mogu da se izraze na nekoliko različitih načina, tako da postoji više konvencija.
Prvi argument može da se predstavi na više načina kao:
modularni ugao
eliptički modul ili ekscentricitet
parametar.
Svaka od tri veličine može da se prikaže pomoću bilo koje druge od tri veličine.
Drugi argument može da se predstavi kao:
amplituda
- x ili u, gde je
,
a
je jedna od Jakobijevih eliptičkih funkcija.
Pri tome vredi:


Nepotpuni eliptički integrali prve vrste F definisan je kao:

To je trigonometrijski oblik integrala. Zamenjujući
dobija se Jakobijev oblik:

Pomoću amplitudnoga ili modularnoga ugla dobija se:

U toj notaciji vredi:

Sa
dobija se:

Nepotpuni eliptički integrali druge vrste E su oblika:

Zamenjujući
, dobija se Jakobijev oblik:

Na sličan način pomoću amplitude i modularnoga ugla vredi:

Odnosi sa Jakobijevim eliptičkim funkcijama su:

Nepotpuni eliptički integrali treće vrste Π je:
,
ili

Broj n naziva se karakteristika i može da uzme bilo koju vrednost.
Treba primetiti da je vrednost
beskonačna za bilo koji m.
Odnosi sa Jakobijevim eliptičkim funkcijama su:

Eliptički integrali su potpuni ako je φ=π/2 i onda je x=1.
Potpuni eliptički integrali prve vrste
mogu onda da se definišu kao:

ili pomoću nepotpunoga integrala prve vrste:

Mogu da se prikažu i preko reda:
![{\displaystyle K(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]^{2}k^{2n}={\frac {\pi }{2}}\sum _{n=0}^{\infty }[P_{2n}(0)]^{2}k^{2n},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e599a1506a21fcece196be5cdf48230aaa1cc066)
gde
predstavlja Ležandrov polinom, koji je:
![{\displaystyle K(k)={\frac {\pi }{2}}\left\{1+\left({\frac {1}{2}}\right)^{2}k^{2}+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}k^{4}+\cdots +\left[{\frac {\left(2n-1\right)!!}{\left(2n\right)!!}}\right]^{2}k^{2n}+\cdots \right\},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/377e26e9eb16913524ce060131ef61e8da5e2a79)
zadovoljava sledeće jednačine:

![{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} k}}\left[k(1-k^{2}){\frac {\mathrm {d} K(k)}{\mathrm {d} k}}\right]=kK(k)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db809432b43a7c3f41a1e3de08ff3462a8d05eb0)
Potpuni eliptički integrali druge vrste
odgovara obimu elipse i definiše se kao:

ili preko nepotpunoga integrala druge vrste:

Mogu da se prikažu i preko reda:
![{\displaystyle E(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]^{2}{\frac {k^{2n}}{1-2n}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea7ddc66dd724a737e64373295610ac6bb1bf83e)
što je ekvivalentno:
![{\displaystyle E(k)={\frac {\pi }{2}}\left\{1-\left({\frac {1}{2}}\right)^{2}{\frac {k^{2}}{1}}-\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}{\frac {k^{4}}{3}}-\cdots -\left[{\frac {\left(2n-1\right)!!}{\left(2n\right)!!}}\right]^{2}{\frac {k^{2n}}{2n-1}}-\cdots \right\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2f8f16f0b8c726c8e65014e1cef78f8ebc6c275)
Za njega važe i jednačine:

![{\displaystyle (k^{2}-1){\frac {\mathrm {d} }{\mathrm {d} k}}\left[k\;{\frac {\mathrm {d} E(k)}{\mathrm {d} k}}\right]=kE(k)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14259fc7b0318212f66c2b207276f8f26d5934e3)
Potpuni eliptički integrali treće vrste
definiše se kao:

Za njega važi:


- Abramowitz, Milton; Stegun, Irene A., eds. (1965), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover. ISBN 978-0-486-61272-0.
- Eliptički integral
- Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press