Pređi na sadržaj

Logika prvog reda

S Vikipedije, slobodne enciklopedije

Logika prvog reda ili predikativni račun prvog reda je formalni sistem koji se koristi u matematici, filozofiji, lingvistici i računarstvu. Ovde ćemo izložiti samo osnovni i najformalniji deo nužan kao potpora člancima teorije skupova.

Logika prvog reda

[uredi | uredi izvor]

Logika prvog reda ili predikatska logika prvog reda se bazira na:

  • objektima,
  • svojstvima (unarnim predikatima nad objektima),
  • relacijama (n-arnim predikatima nad objektima),
  • funkcijama (preslikavanjima objekata na objekte).

Sintaksa logike prvog reda

[uredi | uredi izvor]
Исказ → ПростИсказ
       |Исказ Свеза Исказ
|Квантификатор Променљива Исказ
|¬ Реченица
|(Реченица)
ПростИсказ → Предикат(Објект, Објект, ...) | Објект = Објект
Објект = Функција(Објект, Објект, ...) | Константа
| Променљива
Свеза →
Квантификатор → Константа → <tekst> тј. "A" | "1" | "а" Променљива → x | y | z |...
Предикат → otac| brat| poseduje| ...
Функција → saberi| predji|...

Objekti su:
konstante: <tekst>, tj. 0, 1, "a", "ababa"
imena funkcija: tj.

Iskaz je predikat nad jednim ili više objekata. Predikat je neko svojstvo ili relacija među objektima koji može biti istinit ili lažan.
U gornjim primerima znači da imaju zajedničkog oca, da su braća.
ProstIskaz je predikat primenjen na objekte. Npr.

 тј. Перо поседује ауто, 
 тј, Мујо и Суљо су браћа.

Semantika Iskaza i ProstogIskaza je istina ili laž.

Sveze se koriste pri konstrukciji (složenih) Iskaza

 тј. Мујо и Суљо су браћа, Мујо има ауто а  Суљо нема.

Kvantifikatori

[uredi | uredi izvor]

Koriste se ako se Iskaz odnosi na kolekciju objekata kako bi se izbeglo brojanje objekata

  • Univerzalni kvantifikatorr:

Iskaz je istinit za sve vrednosti promenljive x.

 Сви пси су сисари
  • Egzistencijalni kvantifikator:

Iskaz je istinit za bar jednu vrednost promenljive x.

 Марија има (бар једну) мачку црне боје
 На овом свету постоји бар једна особа која воли псе и мрзи мачке

Upotreba kvantifikatora

[uredi | uredi izvor]
  • Univerzalni kvantifikator se koristi implikativno
 Све на овом свету је човек и сисар
  • Egzistencijalni kvantifikator se koristi vezivno:
 На овом свету има нешто што Јован не поседује или постоји на овом свету пас

Ugneždeni kvantifikatori

[uredi | uredi izvor]
  • Poredak kvantifikatora istog tipa u iskazu je nevažan


  • Poredak kvantifikatora različitog tipa u iskazu je nevažan
 Свако воли некога, тј. свако има неког кога воли
 Постоји на овом свету неко кога свако воли

Područje ili zona važenja promenljive

[uredi | uredi izvor]
  • Područje ili zona važenja promenljive je iskaz na koji je kvantifikator primenljiv.
  • Promenljiva u logičkom izrazu se vezuje za najbliži kvantifivator unutar iskaza u kome se pojavljuje
 Пси постоје и сви су жути.  у  је универзално квантифициран.
  • U dobro napisanoj formuli sve promenljive moraju biti kvantifikovane:
 Ова формула није добро написана

Logička veza među kvantifikatorima

[uredi | uredi izvor]
  • Logička veza među univerzalnim i egzistencijalnim kvantifikatorom:


  • Opštevažeći identiteti:






Jednakost

[uredi | uredi izvor]
  • Jednakost se uključuje kao primitivni logički predikat.
  • Primeri:

Јован има два пса. Једнакост се користи овде да се обезбеди да су  и  различити, тј. да се искључи интерпретација да  и  могу бити исти пас

 
Сваки син има оца. Друга свеза  обезбеђује да сваки син има једног оца.

Logike višeg reda

[uredi | uredi izvor]
  • U logici prvog reda kvantifikatori su primenljivi samo na objekte.
  • U logici drugog reda kvantifikatori su primenljivi samo na predikate i funkcije:
 Два објекта су једнака ако и само ако имају иста својства.
 Две функције су једнаке ако и само ако имају исте вредности за све могуће аргументе.
  • Logika trećeg reda dopušta kvantifikaciju predikata, itd.

Na primer, predikat drugog reda može biti tj. binarni predikat je relacija refleksivnosti.

Literatura

[uredi | uredi izvor]
  • Raymond M. Smullyan: First-order Logic, Courier Corporation, 1995
  • Leigh S. Cauman: First-order Logic: An Introduction, Walter de Gruyter, 1998

Spoljašnje veze

[uredi | uredi izvor]