Postulati termodinamike
Postulati termodinamike su 4 aksiome na osnovu kojih je u termodinamici moguće određivanje ravnotežnog stanja sistema koji bi u tom stanju mogao da ostane i nakon ukidanja granice koja ga izdvaja od okoline.
Nulti postulat
[uredi | uredi izvor]Nulti postulat termodinamike: Postoje određena stanja jednostavnog termodinamičkog sistema (koja se nazivaju termodinamički ravnotežna stanja) u kojima je on potpuno određen unutrašnjom energijom (U), zapreminom (V) i broj čestica svake od komponenti koje čine taj sistem (N1,N2, ... N3).
Termodinamički ravnotežna stanja se odlikuju sa dve osobine - moraju biti stacionarna i makroskopski ne sme postojati makroskopski fluks nijedne veličine. Karakteristika termodinamički ravnotežnih stanja je da ona ne zavise od istorije stanja, tj. od načina dolaska u trenutno stanje.
Prvi postulat
[uredi | uredi izvor]Prvi postulat termodinamike: Postoji funkcija (koja se naziva entropija) ekstenzivnih parametara bilo kog kompozitnog sistema (sistema koji se sastoji od jedne ili više komponenti) koja je definisana za sva termodinamički ravnotežna stanja i za koju će pretpostavljeni parametari koji opisuju sistem, u odsustvu unutrašnjih ograničenja imati one vrednosti koje će maksimizovati ovu funkciju na mnogostrukosti ograničenoj ravnotežnim stanjima.
Prvi postulat zapravo definiše entropiju tako da ako sistem ima slobodu nekih parametara, ravnotežno stanje sistema u koje će on spontano dospeti biće ono u kojem je entropija maksimalna. Treba obratiti pažnju da je entropija definisana samo za ravnotežna stanja.
Drugi postulat
[uredi | uredi izvor]Drugi postulat termodinamike: Entropija je neprekidna, diferencijabilna i monotono rastuća funkcija energije. Entropija kompozitnog sistema je aditivna funkcija njegovih podsistema.
Ako se sistem podeli na međusobno disjunktne podsisteme, iz osobine aditivnosti entropije sledi da je entropija jednostavnog termodinamičkog sistema homogena funkcija prvog reda kao funkcija ekstenzivnih parametara, tj. da je: S(cU,cV,cN1, cN2, ...cNk)=cS(U,V,N1, N2, ..., Nk)
Posledica monotonosti je da je parcijalni izvod po bilo kom od ovih ekstenzivnih parametara u slučaju kada su svi ostali parametri fiksirani striktno pozitivan. Tako je entropija rastuća funkcija unutrašnje energije, pa je uslov ravnoteže da se dostigne maksimalna vrednost entropije ili minimalna vrednost unutrašnje energije.
Treći postulat
[uredi | uredi izvor]Treći postulat termodinamike (dopunjeni Nernstov postulat): Na nultoj temperaturi (temperatura se definiše kao parcijalni izvod unutrašnje energije po entropiji, gde su svi ostali ekstenzivni parametri fiksirani) entropija je nula.
Direktna posledica ovog postulata je da entropija (za razliku od unutrašnje energije npr.) ima jednoznačno određenu nultu vrednost.[1]
Vidi još
[uredi | uredi izvor]Reference
[uredi | uredi izvor]- ^ Thermodinamics and an Introduction to Thermostatistics, druga edicija, Hebert B. Callen