Sinteza receptora vitamina vitamina D3 je genetički kontrolisana. Ovaj receptor istovremeno funkcioniše i kao receptor za sekundarnu žučnu i litoholinsku kiselinu. Receptor pripada porodici of trans-aktivnih transkripcionih regulatornih faktora i pokazuje sličnost sekvence sa receptorima steroidnih i tiroidnih hormona.[5]
Nizvodni ciljevi ovog nuklearnog hormonskog receptora su uglavnom obuhvaćeni metabolizamom minerala, iako receptor reguliše i niz drugih metaboličkih puteva, kao što su oni koji učestvuju u imunim odgovorima i raku.[6]
Receptor vitamina D ima važnu ulogu u regulisanju ciklusa rasta dlake. Gubitak gena VDR je, kod ekperimentalnih životinja, povezan sa gubitkom dlake.[8] Experimentalna proučavanja pokazuju da neligandirani VDR stupa u interakciju sa ragulatornim regionom gena cWnt (wnt signalni put) i slušnog ježa, i da je neophodan za pokretanje ovih puteva tokom postnatalnog ciklusa rasta dlake.[9] Ove studije su otkrile nove akcije neligandskih VDR u regulisanju post-morfogenog ciklusa dlake.
^Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA (2006). „International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor”. Pharmacol. Rev. 58 (4): 742—59. PMID17132852. doi:10.1124/pr.58.4.6.
^Lisse TS, Chun RF, Rieger S, Adams JS, Hewison M (2013). „Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts”. J Bone Miner Res. 28 (6): 1478—14788. PMID23362149. doi:10.1002/jbmr.1882.
^Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006). „Overview of nomenclature of nuclear receptors”. Pharmacol. Rev. 58 (4): 685—704. PMID17132848. doi:10.1124/pr.58.4.2.
^Adorini L, Daniel KC, Penna G (2006). „Vitamin D receptor agonists, cancer and the immune system: an intricate relationship”. Curr Top Med Chem. 6 (12): 1297—301. PMID16848743. doi:10.2174/156802606777864890.
^Luderer HF, Demay MB (2010). „The vitamin D receptor, the skin and stem cells”. J. Steroid Biochem. Mol. Biol. 121 (1–2): 314—6. PMID20138991. doi:10.1016/j.jsbmb.2010.01.015.
^Lisse TS, Saini V, Zhao H, Luderer HF, Gori F, Demay MB (2014). „The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes”. Mol. Endocrinol. 28 (10): 1698—1706. PMID25180455. doi:10.1210/me.2014-1043.
^Guzey M, Takayama S, Reed JC (2000). „BAG1L enhances trans-activation function of the vitamin D receptor”. J. Biol. Chem. 275 (52): 40749—56. PMID10967105. doi:10.1074/jbc.M004977200.
^ абвгдKitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S (2003). „The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome”. Cell. 113 (7): 905—17. PMID12837248. doi:10.1016/S0092-8674(03)00436-7.
^ абIto M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (1999). „Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators”. Mol. Cell. 3 (3): 361—70. PMID10198638. doi:10.1016/S1097-2765(00)80463-3.
^ абTagami T, Lutz WH, Kumar R, Jameson JL (1998). „The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators”. Biochem. Biophys. Res. Commun. 253 (2): 358—63. PMID9878542. doi:10.1006/bbrc.1998.9799.
^ абвгPuccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, Ottmann OG, Pelicci PG, Nervi C, Ruthardt M (2002). „AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor”. Cancer Res. 62 (23): 7050—8. PMID12460926.
^Herdick M, Steinmeyer A, Carlberg C (2000). „Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators”. J. Biol. Chem. 275 (22): 16506—12. PMID10748178. doi:10.1074/jbc.M910000199.
^ абвZhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN (2001). „Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription”. J. Biol. Chem. 276 (44): 40614—20. PMID11514567. doi:10.1074/jbc.M106263200.
Hosoi T (2002). „[Polymorphisms of vitamin D receptor gene]”. Nippon Rinsho. 60 Suppl 3: 106—10. PMID11979895.
Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP (2004). „Genetics and biology of vitamin D receptor polymorphisms”. Gene. 338 (2): 143—56. PMID15315818. doi:10.1016/j.gene.2004.05.014.
Norman AW (2007). „Minireview: vitamin D receptor: new assignments for an already busy receptor”. Endocrinology. 147 (12): 5542—8. PMID16946007. doi:10.1210/en.2006-0946.
Bollag WB (2007). „Differentiation of human keratinocytes requires the vitamin d receptor and its coactivators”. J. Invest. Dermatol. 127 (4): 748—50. PMID17363957. doi:10.1038/sj.jid.5700692.
Goto H, Chen KS, Prahl JM, DeLuca HF (1992). „A single receptor identical with that from intestine/T47D cells mediates the action of 1,25-dihydroxyvitamin D-3 in HL-60 cells”. Biochim. Biophys. Acta. 1132 (1): 103—8. PMID1324736. doi:10.1016/0167-4781(92)90063-6.
Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF (1992). „The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7”. Genomics. 11 (1): 168—73. PMID1662663. doi:10.1016/0888-7543(91)90114-T.
Yu XP, Mocharla H, Hustmyer FG, Manolagas SC (1991). „Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing”. J. Biol. Chem. 266 (12): 7588—95. PMID1850412.
Sone T, Marx SJ, Liberman UA, Pike JW (1991). „A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3”. Mol. Endocrinol. 4 (4): 623—31. PMID2177843. doi:10.1210/mend-4-4-623.
Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O'Malley BW (1989). „Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets”. Science. 242 (4886): 1702—5. PMID2849209. doi:10.1126/science.2849209.
Rut AR, Hewison M, Kristjansson K, Luisi B, Hughes MR, O'Riordan JL (1995). „Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures”. Clin. Endocrinol. (Oxf). 41 (5): 581—90. PMID7828346. doi:10.1111/j.1365-2265.1994.tb01822.x.
Malloy PJ, Weisman Y, Feldman D (1994). „Hereditary 1 alpha,25-dihydroxyvitamin D-resistant rickets resulting from a mutation in the vitamin D receptor deoxyribonucleic acid-binding domain”. J. Clin. Endocrinol. Metab. 78 (2): 313—6. PMID8106618. doi:10.1210/jc.78.2.313.
Maruyama K, Sugano S (1994). „Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides”. Gene. 138 (1–2): 171—4. PMID8125298. doi:10.1016/0378-1119(94)90802-8.
Yagi H, Ozono K, Miyake H, Nagashima K, Kuroume T, Pike JW (1993). „A new point mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor in a kindred with hereditary 1,25-dihydroxyvitamin D-resistant rickets”. J. Clin. Endocrinol. Metab. 76 (2): 509—12. PMID8381803. doi:10.1210/jc.76.2.509.
Lin NU, Malloy PJ, Sakati N, al-Ashwal A, Feldman D (1996). „A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets”. J. Clin. Endocrinol. Metab. 81 (7): 2564—9. PMID8675579. doi:10.1210/jc.81.7.2564.